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Abstract

We analyze a model in which a firm with multiple locations

chooses capacity and prices to maximize efficiency. We find that

the firm provisions capacity in such a way that the expected frac-

tion of demand that will be unfilled is lower in locations with greater

expected demand. The firm also sets lower prices in larger locations.

Finally, if a customer is indifferent between multiple locations, then

it is more efficient to place this customer in a location with greater

expected demand. These theoretical results are consistent with em-

pirical evidence that we present from a major public cloud provider.
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1 Introduction

There are a wide range of settings in which a firm has multiple locations

of different sizes, and each of these different locations sells a homogeneous

good. For example, many grocery store chains have multiple stores of

different sizes that all sell the same groceries, and many restaurant chains

have multiple different-sized restaurants that all have the same menus. In

each of these settings, the chain must decide how much inventory to provide

in each of its locations to meet the uncertain customer demand, what prices

to charge, as well as how to advertise its locations to encourage customers

to patronize one location or another.

The cloud computing market is another important example of such a

setting. Major cloud providers such as Amazon Web Services, Microsoft

Azure, and Google Cloud sell homogeneous cloud services in dozens of

different regions throughout the world. In each of these regions, the cloud

company provides computing capacity which can be rented on-demand for

computation. Because the computing capacity can be rented on-demand,

the cloud provider does not know what customer demand will be at any

point in time, and the cloud provider must decide how much capacity to

provision while taking into account the inherent uncertainty in customer

demand. In addition, if a customer is indifferent between using multiple

regions, the cloud company can encourage the customer to use whichever

region would be most efficient.

In each of these settings, the firm must provision capacity for its dif-

ferent locations while considering both the costs of provisioning capacity

and the costs of not being able to meet customer demand if the uncertain

demand exceeds capacity. These capacity choices will in turn impact ex-

pected utilization rates, the average fraction of capacity in a given location

that the firm is able to sell, and this will be a key driver of cost differences
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between different locations. Utilization rates are important in many in-

dustries, but they are especially important in the cloud computing market,

where capacity costs are a large fraction of overall costs.

In this type of setting, how should the firm provision capacity in differ-

ent locations? How should the firm set prices in different locations? And

if a firm can take actions that would steer customer demand towards one

location or another, should the firm try to induce new demand to go to

small locations or large locations?

Our interest in this problem was motivated by the following business

question: should internal customers for Microsoft’s cloud services be en-

couraged via internal pricing and other means to make use of regions with

the lowest capacity utilizations? At first glance this may seem economically

optimal. However, by analyzing the question more deeply, we discovered

that the opposite strategy is optimal. Indeed, steering customers to re-

gions with high utilization rates (which tend to be larger regions) can lead

to noticeable cost savings even for a business of Microsoft’s scale. While

documenting the impact of steering internal Microsoft customers to larger

regions is outside the scope of this paper, this paper does provide theo-

retical and empirical results on efficient capacity provisioning and pricing

when a firm has multiple locations.

We analyze a model in which a firm seeks to provision the efficient

amount of capacity, as the firm would if the firm either faces a competitive

market or the firm is a monopolist which faces price-inelastic customers.

In deciding how much capacity to provision in a region, the firm trades off

the costs of providing additional capacity with the welfare gains associated

with being able to satisfy additional demand if demand exceeds supply.

Although we couch our model in terms of the cloud computing market,

our results apply to any setting in which a firm has multiple locations of

different sizes that sell a homogeneous good.
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We show that when costs vary linearly with the amount of capacity

provisioned, as the number of potential customers in a region increases,

the firm provisions more capacity, and the expected fraction of demand

that will be unfilled by capacity goes down. In addition, the price that

is charged for compute also declines as a region becomes larger. This is

consistent with empirical evidence that we present from Microsoft Azure.

Next, we address the question of whether it is more efficient to direct

new customers who are willing to purchase compute in any region to a large

region or a small region. In this setting, the expected fraction of capacity

that will go unsold will be larger in small regions because the uncertainty

in demand as a fraction of expected demand is larger in small regions.

This implies that a supplier will overprovision capacity by a larger amount

relative to expected demand in a small region than in a large region in order

to maintain a high probability of being able to meet demand. Because a

larger fraction of capacity is expected to be unsold in small regions, it seems

logical to conjecture that it is more efficient to direct new demand to small

regions to sell more of this unused capacity and help these regions achieve

better economies of scale.

We show that this conjecture is false and that the opposite is true. The

same reasoning that implies that a supplier will overprovision capacity by

a larger amount relative to expected demand in small regions also implies

that small regions have relatively higher average costs per unit of demand.

Even though directing new demand to small regions will help these regions

achieve better economies of scale, the fact that small regions have relatively

higher average costs per unit of demand implies that directing new demand

to smaller regions will cause small regions to have to provision a larger

amount of additional capacity as a result of the new demand than large

regions. Thus, the marginal cost of serving an additional customer is larger

in small regions than in large regions, and it is more efficient to direct new
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customers who are willing to purchase compute in any region to a larger

region. This finding is also consistent with empirical evidence that we

present from Microsoft Azure.

Finally, we extend our analysis to a model in which some customers

are hyper-flexible in the sense that their workloads can be deployed in any

region after observing the demand of other customers that must be placed

in specific regions. This hyper-flexibility might be achieved in practice by

offering a cloud product in which workloads can be migrated from one

region to another after observing the arrival of new demand that must

be placed in specific regions. Although such a product is not currently

offered by the major cloud providers, cloud providers have expanded their

technological capabilities over time, and it is possible that such a product

might be developed in the future. It is thus worthwhile to understand how

a cloud provider would provision capacity if customers can someday deploy

these hyper-flexible workloads.

In this setting, we illustrate that when there is little hyper-flexible de-

mand compared to the region-specific demand, the marginal cost of ad-

ditional hyper-flexible demand will be many orders of magnitude smaller

than the marginal cost of additional demand that must be placed in specific

regions. Thus, introducing a hyper-flexible product would enable a cloud

provider to significantly improve efficiency, even when there is relatively

little adoption of the product.

However, when there is a large amount of hyper-flexible demand, there

will be little difference between the marginal cost of additional hyper-

flexible demand and the marginal cost of additional region-specific demand.

Thus, if hyper-flexible cloud products eventually become sufficiently pop-

ular, it will make little difference to the cloud provider whether additional

demand is hyper-flexible. However, the presence of a large amount of hyper-

flexible demand will matter to customers in smaller regions because this
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hyper-flexible demand will lower the cost of compute in small regions closer

to the price in large regions.

2 Background on Public Cloud

2.1 Industry Overview

The cloud computing industry is young, large, and rapidly growing. Al-

though some of the concepts behind the public cloud were developed in the

1960s, all modern public clouds first emerged in the 21st century (Foote

2017). Annual world cloud revenues exceeded $270 billion in 2020 and are

growing at 23% per year (Graham et al. 2021a).

The public cloud consists of a wide range of services including infras-

tructure as a service (IaaS), platform as a service (PaaS), and software as

a service (SaaS). SaaS involves providing applications such as web-based

email and productivity software to a consumer that can be accessed via the

Internet. PaaS provides a platform for deploying consumer-created appli-

cations using the provider’s programming languages, libraries, and tools.

And IaaS provisions fundamental computing resources such as processing,

storage, and network to a consumer that can be used to deploy and run

arbitrary software (Mell and Grance 2011).

Since the IaaS market can be thought of as a market for renting hard-

ware, the questions on capacity provisioning studied in this paper are most

relevant to the IaaS market, where annual world revenues exceeded $60

billion in 2020 (Graham et al. 2021a). The three largest IaaS providers in

the United States are Amazon Web Services, Microsoft Azure, and Google

Cloud, which account for 41%, 20%, and 6% of the world market respec-

tively. In addition, the Chinese companies Alibaba and Huawei account for

10% and 4% of the world IaaS market respectively (Graham et al. 2021b).
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Potential cloud customers can continue to use on-premise computing

resources or can choose to move some of their computing needs to one of

the public clouds. Many enterprise customers adopt a multi-cloud strategy

of simultaneously using multiple different public cloud providers, simulta-

neously using both public cloud and private computing resources, or both

(Flexera 2020). If a customer is initially using one public cloud, there are

switching costs involved in moving to another public cloud, both due to

the work involved in migrating particular applications and the fact that

the customer will initially be less familiar and proficient with this other

public cloud. Cloud providers attempt to reduce these switching costs by

offering resources to help customers migrate from one public cloud to an-

other (e.g. Microsoft Azure 2020c).

2.2 Virtual Machines

One of the main products sold by public cloud providers is a virtual machine

or VM. From a user’s point of view, a VM behaves like a computer that

can be accessed remotely over the web. However, a VM is not a physically

existing computer, as one physical machine can potentially power multiple

small VMs (Microsoft Azure 2020f).

The largest cloud providers all sell a wide range of VMs that differ in

dimensions such as the hardware that they use, whether they run Linux or

Windows, their processing power, and the amount of memory (RAM) and

temporary storage that they have. While there are differentiating factors

between the major cloud providers, for most types of VMs offered by one of

the largest public cloud providers, there are typically comparable offerings

available from other large cloud providers at similar prices.1

1For example, the VMs offered by Amazon Web Services, Microsoft Azure,
and Google Cloud can be found on https://aws.amazon.com/ec2/instance-types/,
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/, and
https://cloud.google.com/compute/ respectively.
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2.3 Regions

Major cloud providers such as Amazon Web Services, Microsoft Azure,

and Google Cloud each have dozens of regions around the world which

house the physical machines used to provide cloud services. For example,

Microsoft Azure currently has over 60 announced regions, more than any

other cloud provider (Microsoft Azure 2020a). In addition to many re-

gions in the United States as well as many regions in various countries in

Western Europe, Azure also has multiple regions in many other countries

including Australia, Brazil, Canada, China, India, Japan, Korea, South

Africa, United Arab Emirates, and others (Microsoft Azure 2020a).

In deploying a VM, a customer will be able to select the region for

the deployment. There are several reasons customers may have preferences

for particular regions. Deploying to a more proximate region may reduce

latency for a customer’s applications. In addition, some customers may

prefer to store data within a particular jurisdiction because of data custody

laws. Finally, even if a customer is indifferent between multiple regions

originally, after the customer has deployed a VM in a particular region,

the customer may also prefer that any additional VMs are deployed in the

same region because the customer is either storing data in that region or the

customer has some critical process that runs continuously in that region.2

2.4 Business Models

Most cloud computing revenues come from pay as you go transactions, in

which a customer only pays for the time in which the customer’s VMs are

deployed.3 These list prices depend significantly on the type of VM that

2Wang et al. (2020) also empirically estimate a structural demand model of spa-
tial competition using data from the cloud computing industry and find evidence that
customers tend to prefer closer regions.

3Some customers also purchase compute via a reserved instance or savings plan, in
which a customer commits to purchasing a given amount of compute in every hour for a
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the customer uses and to a lesser extent on the region in which the VM is

deployed. For example, on Microsoft Azure, the pay as you go price for a

Linux A1v2 VM that runs on general purpose hardware with one virtual

core, 2 gigabytes (GB) of RAM, and 10 GB of temporary storage ranges

from $0.036 to $0.0793 per hour, depending on the region (Microsoft Azure

2020d). By contrast, the pay as you go price for a Linux M416msv2 VM

that runs on specialized hardware with 416 virtual cores, 12 terabytes (TB)

of RAM, and 8 TB of temporary storage is over $99 per hour in all regions

(Microsoft Azure 2020d).4

While the list prices depend on the type of VM the customer uses as

well as the region in which the VM is deployed, the list prices offered for

such transactions tend to be stable over time. Although cloud providers

sometimes lower prices for VMs,5 to the best of our knowledge, none of

the major public clouds has ever increased prices for any of its VMs. In

addition, these list prices do not change dynamically as a result of short-

run changes in demand that may result during different times of day and

different days of the week (Kilcioglu et al. 2017).

2.5 Why Auctions Are Not Used

The fact that compute is sold via fixed prices may seem surprising because

demand varies over time as customers’ computing needs evolve, and it may

seem that an auction could more efficiently allocate capacity to customers

when demand is uncertain and dynamically evolving. Why are auctions

period of 1-3 years, even if the customer did not deploy VMs during a particular hour.
These reserved instances can result in discounts as large as 72% off the pay as you go
price for three-year commitments on particular types of VMs (Microsoft Azure 2020b).

4It is worth noting that the difference in cost per operation for VMs with different
specifications is typically smaller than the difference in price per hour because operations
tend to finish more quickly on more powerful VMs. For example, Kilcioglu and Rao
(2015) note that completing an operation with a VM whose price per hour is 8 times
higher leads to a cost per operation that is 3 to 4 times higher.

5For example, in May 2017, Microsoft Azure announced price reductions of 4 − 7%
for general purpose virtual machines (Hillger 2017).
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not used to allocate capacity to customers?

First, note that cloud providers provision enough capacity so that it

is very unlikely that there will be a stockout in which there is not enough

capacity to meet customer demand. Cloud customers may suffer substantial

losses if a vital service is interrupted briefly because the customer was not

able to purchase the VMs that it needs for a short period of time, much

as an electricity consumer may suffer substantial losses if the consumer

is unable to purchase needed electricity for a few hours.6 Because cloud

customers may suffer such substantial losses if they are unable to purchase

the VMs that they need, cloud customers often have a value per unit of

compute that is orders of magnitude higher than the corresponding capacity

costs, and cloud providers try to ensure that with near certainty there will

be enough capacity to meet demand.

Since cloud providers provision enough capacity to almost always be

able to meet demand, if a cloud provider used an auction to sell compute

to customers, the final price at the auction would almost always be equal to

the reserve price. However, since cloud customers typically have a value per

unit of compute that is orders of magnitude higher than the corresponding

capacity costs, in the rare event that there was not enough capacity to meet

all demand, the final price in an auction would be dramatically higher than

the cloud provider’s costs. Thus, if a cloud provider used an auction to sell

compute to customers, there would be a very high probability that all

customers could obtain all the compute they wanted at a low price and a

low probability that the final price would be very high.

There are two problems with this pricing that would make auctions

unsuitable in practice. First, using an auction results in a very high amount

6There are some cloud customers who can tolerate interruptions of their workloads,
and these customers may use Spot VMs, a VM that has a deep price discount, but can
be evicted if the cloud provider needs to reclaim the capacity. Since Spot customers will
not suffer substantial losses from having VMs evicted, the need for fixed prices does not
apply to Spot VMs, and Spot VMs make use of time-varying prices (Shandilya 2020).
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of uncertainty about the final realized prices. Thus, if either the cloud

provider or the cloud customers are risk averse, using an auction to set

prices will not meet either party’s needs.

Second, under an auction a cloud provider has a far stronger incentive

to underinvest in capacity than under a fixed price mechanism. Under a

fixed price mechanism, the cloud provider’s revenue can only go down as a

result of underinvesting in capacity, as the cloud provider will not be able

to service as much demand. But under an auction, underinvesting in capac-

ity will significantly increase a cloud provider’s revenue by increasing the

probability that there will not be enough capacity to meet demand, thereby

increasing the probability that the final price in the auction will be very

high. Thus, using a fixed price mechanism also enables a cloud provider

to more credibly commit to provision the efficient amount of capacity. We

illustrate these points formally in Appendix A in the paper.7

3 Related Literature

Our paper relates to several distinct strands of literature. First, there is

a literature on pricing of cloud services (Abhisheki et al. 2012; Babaioff

et al. 2017; Ben-Yehuda et al. 2013; Dierks and Seuken 2021; Hoy et al.

2016; Kash and Key 2016; Kash et al. 2019; Kilcioglu and Maglaras 2015;

Kilcioglu et al. 2017). This literature largely focuses on questions related

to using fixed and variable pricing for cloud services, but does not address

questions related to pricing cloud services in different-sized regions, as we

do in the present paper.

The operations research literature has also studied questions related

to provisioning capacity for multiple locations. Much of this literature

7In addition, Hummel (2018) illustrates in a formal model that a seller would have
an incentive to provision less capacity under an auction than under fixed prices.
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analyzes the economic benefits of risk pooling by consolidating multiple

random demands into a single location. The earliest such paper is Eppen

(1979), which illustrates in a newsboy model with normally distributed

demands and linear costs that pooling multiple random demands leads to

lower costs and that the cost difference is increasing in the variance of the

demands but decreasing in the correlation between these demands. There

are also many other papers that consider multi-location newsboy models

such as Alfaro and Corbett (2003), Berman et al. (2011), Bimpkins and

Markakis (2016), Chen and Lin (1989), Cherikh (2000), Gerchak and He

(2003), Gerchak and Mossman (1992), and Yang and Schrage (2009) which

extend Eppen’s (1979) work in various ways. Finally, there has also been

some work (e.g. Benjaafar et al. 2005) which analyzes the benefits of

pooling in models of production-inventory systems.

Our work shares some features with this previous literature in that we

also consider a newsboy model in which a supplier provisions capacity to

meet an uncertain demand, and there is both a cost to provisioning capacity

as well as a loss from not being able to meet demand. The question we ask

about how one should consolidate the demand from a new customer into

the supplier’s existing locations is also of the same flavor as the questions

addressed by this risk pooling literature. However, the specific result we

present about whether it is better to direct a new customer to a large

location or a small location has not appeared in these previous papers.8

There has been comparably little theoretical work related to the results

we present on how prices vary with the size of a firm’s location. The only

theory paper we are aware of that addresses the question of how prices vary

with the size of a store is Braid (2003). This paper considers a model of

spatial competition in which large stores alternate with small stores along

8Benjaafar et al. (2008) analyzes the problem of how to allocate demand that origi-
nates from multiple sources to different inventory locations, but again does not analyze
whether it is better to direct a new customer to a large location or a small location.
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an infinite roadway, and finds the opposite conclusion that larger stores

will charge higher prices in equilibrium. Our model and results thus differ

significantly from those in this previous paper.

Finally, there are some empirical papers that address questions related

to capacity provisioning and pricing in different-sized grocery stores. Sev-

eral empirical papers have found that the price of groceries tends to be

lower at larger grocery stores (e.g. Alcaly and Klevorick 1971; Chung and

Myers 1971; Kaufman 1998; Kaufman et al. 1997; Kunreuther 1972; Liese

et al. 2007). These results give a specific empirical example of our theo-

retical finding that prices tend to be lower in larger locations. However,

the mechanism driving these results could be different from the mechanism

identified in our paper.

There is also evidence that larger grocery stores are less likely to run

out of a particular type of grocery than smaller grocery stores, as Connell

et al. (2007), Kaufman (1998), Kaufman et al. (1997), and Liese et al.

(2007) have all found that larger grocery stores are more likely to have

certain inventory than smaller grocery stores. These results are somewhat

related to our theoretical finding that there is a lower probability that an

individual customer will be unable to obtain the inventory the customer

desires if the customer is in a larger location.

4 Model

There are a total of N potential customers in a region, each of whom de-

mands some amount of compute. Throughout we let Di denote the demand

of customer i. The demand of the customers, (D1, . . . , DN), is uncertain

at the time the cloud provider provisions capacity, but is known to be a

random draw from some cumulative distribution function GN(D1, . . . , DN).

After customer demand is realized, the cloud provider allocates ki ∈
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[0, Di] units of compute to each customer i. The customer then obtains a

utility of ui(ki) = min{ki, Di}V if the customer is allocated ki units.

It costs the cloud provider a total of cQ to supply Q units of compute,

where c is a cost parameter satisfying c < V . Because the cloud market

is a competitive9 and rapidly growing market where a provider’s long-run

profits are likely to depend primarily on the amount of economic value cre-

ated, we assume that the cloud provider chooses Q to maximize efficiency,

the economic value created net of costs. In particular, if D =
∑N

i=1Di

denotes total demand, then the cloud provider sells min{D,Q} units, and

the economic value net of costs is min{D,Q}V − cQ, so the cloud provider

seeks to maximize E[min{D,Q}]V − cQ.

While we assume the cloud provider maximizes efficiency, our results

do not depend on the assumption of a competitive market. If the cloud

provider were a monopolist, the cloud provider would still have an incentive

to choose the efficiency-maximizing level of capacity in our model, and all

but one of our results would continue to hold with an identical proof.10

Finally, we assume that the cloud provider sets a price p that is increas-

ing in average costs per unit sold. In particular, since the cloud provider

sells min{D,Q} units, and the average cost per unit sold is cQ
E[min{D,Q}] , we

assume that the cloud provider sets a price p that is increasing in cQ
E[min{D,Q}] .

This last assumption is only used for one of the results, and will hold if, for

example, the cloud provider sets prices that result in zero expected profit.

9For example, the price for a Microsoft Azure VM falls within 5% of the price of
an Amazon Web Services VM for 82% of the regions and VMs where Amazon Web
Services and Microsoft Azure have identical product offerings (91% when weighted by
Azure region size).

10While the cloud market falls between the extremes of perfect competition and a
monopoly, understanding firm behavior in a perfectly competitive market is still a useful
approximation for understanding firm behavior under oligpolistic competition, and since
our results hold under both a monopoly and perfect competition, we expect many of
these insights to extend to a model with oligopolistic competition. We leave a full
solution to the oligopolistic competition problem to future work.
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4.1 Assumptions on Demand Distribution

For arbitrary distributions of demand, GN(D1, . . . , DN), it is difficult to

make statements about how the price or the probability that an individual

customer will fail to obtain a unit of compute that the customer desires

will vary with N . Thus, we make some simplifying assumptions that are

likely to hold in practice to assist with the analysis.

Throughout we assume that for sufficiently large values of N ,11 the dis-

tribution of total demand, D =
∑N

i=1 Di, is drawn from a continuous dis-

tribution Φ(D|µ(N), σ(N)) with mean µ(N) and standard deviation σ(N),

where Φ(D|µ(N), σ(N)) = Φ(D−µ(N)
σ(N)

) for some distribution Φ(·) with mean

0 and standard deviation 1 that is symmetric about 0 in the sense that

Φ(D) = 1− Φ(−D). We further assume that µ(N) and σ(N) are increas-

ing functions of N such that σ(N)
µ(N)

is decreasing in N and σ(N) is a strictly

concave function of N .

This simplifying assumption will hold under many natural assumptions

about customer demand. For example, if each customer’s demand Di is

an independent and identically distributed draw from a distribution G(·)

with bounded support, then for sufficiently large N , the distribution of

customer demand is approximately normal with mean µN and standard

deviation σ
√
N , where µ and σ denote the mean and standard deviation in

the distributionG(·). Thus, this setting would satisfy the above assumption

when Φ(·) corresponds to a standard normal distribution, µ(N) = µN , and

σ(N) = σ
√
N .

In addition, this simplifying assumption also encompasses cases in which

there can be systematic shocks to demand (e.g. a common component

that impacts each of the customer demands D1, . . . , DN), so σ(N)
µ(N)

remains

11In the context of the cloud computing market, the large N regime can be relevant
even for relatively small regions. For instance, for a business of Microsoft Azure’s scale,
even a relatively small region may see significant usage.
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bounded away from zero, even in the limit as N →∞. Thus, this assump-

tion is one that we could expect to hold in many practical settings.

5 Theoretical Results

5.1 How Price and Service Quality Vary with Region

Size

This section addresses the question of how the prices and the fraction of

demand that will be unfilled by the available capacity vary with N . We

begin with the following preliminary lemma:

Lemma 1 For sufficiently large values of N , the cloud provider sets a level

of capacity Q = µ(N) + Φ−1(1− c
V

)σ(N).

All proofs are in Appendix C. The result in Lemma 1 implies that the

cloud provider should provision an amount of capacity Q such that the

probability there will not be enough capacity to meet demand is ρ(Q) = c
V

regardless of the size of the region N .

With Lemma 1 in place, we now illustrate how the fraction of demand

that will be unfilled by the available capacity varies with the size of the

region N :

Theorem 1 For sufficiently large values of N , the expected fraction of

demand that will be unfilled by the available capacity is decreasing in N .

Theorem 1 indicates that, even though the probability there will not

be enough capacity to meet demand is the same in different-sized regions,

the expected fraction of demand that will be unfilled will be lower in larger

regions. The intuition for this result is that as N becomes larger, the

amount of uncertainty in demand as a fraction of expected total demand
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declines. Thus, if demand exceeds supply, the expected difference between

demand and supply as a fraction of total demand declines. This implies

that the probability that an individual customer will fail to obtain a unit

of compute that the customer wants will be lower in larger regions.

It is also worth noting that the expected fraction of demand that will

be unfilled may be much lower than the probability that there will not be

enough capacity to meet demand. In order for a customer to fail to obtain a

unit of compute that the customer wants, it is necessary for there to not be

enough capacity to meet demand. But even if there is not enough capacity

to fulfill all customer requests, it may be that there is enough capacity to

fulfill the vast majority of customer requests. Thus, the expected fraction

of demand that will be unfilled may be much lower than the probability

that there will not be enough capacity to meet demand.

We are also able to present results on how the price varies with the size

of the region:

Theorem 2 For sufficiently large N , the price set for a unit of compute

is decreasing in N .

Since the cloud provider sets prices that are increasing in average costs,

Theorem 2 holds if and only if average costs are decreasing in N . In larger

regions, the amount of uncertainty as a fraction of expected total demand

is lower, so the excess capacity needed (as a fraction of expected demand)

to maintain a high probability of being able to meet all customer requests

is also lower. Because of this, the expected fraction of capacity that will

go unused is smaller in larger regions, and average expected costs are also

smaller in larger regions. This explains the result in Theorem 2.
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5.2 Selecting Regions for Customers

In this section, we address the question of where a cloud provider should

place customers that can be placed in any region. There are some customers

that may have the flexibility to use any region, and when a cloud provider

encounters such customers, the cloud provider must decide whether to en-

courage the customer to use a large region or a small region.

What is the most efficient way to direct demand from customers who

can use any region? To answer this question, it is necessary to understand

how adding demand to a region affects both the incremental capacity costs

as well as the incremental number of deployment failures (i.e. the expected

amount of demand that the cloud provider would fail to meet) in the region.

To address this question, we let C(N) denote the capacity cost that

is incurred in a region with N customers and F (N) denote the expected

number of deployment failures in a region with N customers. We then

analyze how the incremental capacity cost, C(N + 1) − C(N), and the

incremental expected number of deployment failures, F (N + 1) − F (N),

vary with the size of the region N . First, we address this question for

capacity costs:

Theorem 3 Suppose the incremental increase in expected total demand

when adding another customer to a region, µ(N+1)−µ(N), is independent

of N . Then the incremental capacity cost resulting from adding another

customer to a region, C(N + 1)−C(N), is decreasing in N for sufficiently

large N .

The result in Theorem 3 implies that when there is a customer that

has the flexibility to use any region, a cloud provider will incur a smaller

incremental capacity cost if this customer is assigned to a larger region, as

long as this customer would not change its expected demand as a result of

being placed in the larger region. This result follows from the concavity
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of σ(N). Because σ(N) is concave in N , adding an additional customer

to a larger region will do less to increase the amount of uncertainty in

demand than adding this customer to a smaller region, and will thus also

result in smaller incremental capacity costs in order to maintain the same

probability of being able to meet all customer requests.

While adding an additional customer to a larger region results in smaller

incremental capacity costs, it is worth noting that the percentage differ-

ence in incremental capacity costs between two large regions is likely to

be small. Suppose, for example, that each customer’s demand Di is an

independent and identically distributed draw from some cumulative distri-

bution function G(·) with mean µ and standard deviation σ. In this case,

we have µ(N) = µN and σ(N) = σ
√
N , so µ(N + 1) − µ(N) = µ and

σ(N + 1) − σ(N) = σ
2
√
N

+ O( 1
N

) for sufficiently large N . Since we note

in the proof of Theorem 3 that C(N + 1)− C(N) = c[µ(N + 1)− µ(N) +

Φ−1(1 − c
V

)(σ(N + 1) − σ(N))], it then follows that C(N + 1) − C(N) =

c[µ+ Φ−1(1− c
V

)( σ
2
√
N

+O( 1
N

))].

For large values of N , this expression for C(N+1)−C(N) will be within

a few percent of cµ, so the difference between the values of C(N + 1) −

C(N) in two different-sized regions will be at most a few percent. Thus,

the percentage difference in incremental capacity costs between two large

regions would be small in this case.12

Similarly, if there can be systematic shocks to demand, such as a com-

mon component that impacts each of the customer demands D1, . . . , DN , in

addition to these idiosyncratic demand differences between different cus-

tomers, then we might have σ(N) = αN + σ
√
N for some positive con-

stants α and σ in addition to µ(N) = µN . In this case, we would have

C(N + 1)−C(N) = c[µ(N + 1)−µ(N) + Φ−1(1− c
V

)(σ(N + 1)−σ(N))] =

12In addition, we illustrate in Theorem 8 in Appendix B that the absolute difference
in incremental capacity costs between two different-sized regions will be equal to half of
the absolute difference in average costs.
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c[µ + Φ−1(1− c
V

)(α + σ
2
√
N

+ O( 1
N

))]. Similar reasoning would then imply

that the percentage difference in incremental capacity costs between two

large regions is likely to be no more than a few percent.

Next, we address the question of how the size of the region where we

place excess demand impacts the expected number of deployment failures:

Theorem 4 Let F (N) denote the expected number of deployment failures

that are incurred in a region with N customers. Then the incremental

expected number of deployment failures resulting from adding another cus-

tomer to a region, F (N + 1) − F (N), is decreasing in N for sufficiently

large N .

The result in Theorem 4 further implies that when a customer has the

flexibility to use any region, a cloud provider will incur fewer incremental

deployment failures if this customer is assigned to a larger region. Further-

more, unlike the case of incremental capacity costs, the percentage differ-

ence in the incremental expected number of deployment failures resulting

from adding a customer to a different-sized region may be substantial.

In the proof of Theorem 4, we note that F (N) =
∫∞

Φ−1(1− c
V

)
(z−Φ−1(1−

c
V

))σ(N) dΦ(z), so F (N + 1)− F (N) is proportional to σ(N + 1)− σ(N).

Thus, the ratio between the incremental expected number of deployment

failures resulting from adding another customer to a region with N cus-

tomers and the incremental expected number of deployment failures from

adding another customer to a region with 2N customers is σ(N+1)−σ(N)
σ(2N+1)−σ(2N)

.

Now we have seen previously that if each customer’s demand Di is an

independent and identically distributed draw from some distribution G(·)

with standard deviation σ, then σ(N + 1)− σ(N) = σ
2
√
N

+O( 1
N

) for suffi-

ciently large N . Thus, in this case, the ratio σ(N+1)−σ(N)
σ(2N+1)−σ(2N)

≈ 2σ
√

2N
2σ
√
N

=
√

2,

which implies that adding another customer to a region with N customers

instead of 2N customers results in
√

2 times as many incremental deploy-
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ment failures, or roughly 40% more incremental deployment failures. Thus,

adding a new customer to a larger region can result in significantly better

quality of service than adding this customer to a smaller region.

Finally, we can combine the results in Theorems 3 and 4 to illustrate

that it is more efficient to place new customers who can use any region in

larger regions:13

Theorem 5 If a new customer can be placed in any region, it is most

efficient to place this customer in the largest region possible. This will

result in the lowest incremental capacity costs and the smallest number of

incremental deployment failures.

6 Hyper-Flexible Customers

We now extend the model to a situation in which some customers are hyper-

flexible in the sense that their workloads can be deployed in any region after

observing the demand of other customers that must be placed in specific

regions. In order to analyze the consequences of this hyper-flexible demand,

we modify the model to explicitly consider multiple different regions as well

as both region-specific and hyper-flexible demand.

6.1 Extended Model

We suppose there are R regions, and we let Nr denote the number of

customers who must be assigned to region r. We also let Di,r denote the

demand from customer i in region r and let Dr ≡
∑Nr

i=1Di,r denote the total

demand from customers who must be assigned to region r. Finally, for each

region r, we assume that total demand in region r, Dr, is drawn from a

distribution Φ(Dr|µ(Nr), σ(Nr)) with mean µ(Nr) and standard deviation

13It is worth noting that the results in this section hold regardless of the size of a new
customer’s deployment. Thus, the results hold even for large incremental jobs.
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σ(Nr), where Φ(·), µ(N), and σ(N) satisfy the same properties given in

Section 4.1.

To model hyper-flexible customers, we let Nflex denote the number of

customers who are hyper-flexible, and let Di,flex denote the demand from

hyper-flexible customers. We also let Dflex ≡
∑Nflex

i=1 Di,flex denote the

total demand from hyper-flexible customers, and we assume throughout

that Dflex is known.

A customer’s utility function remains the same as the original model.

Thus, if customer i wants a total of Di units of compute, the customer will

be allocated ki ∈ [0, Di] units of compute, and the customer will obtain

a utility of ui(ki) = min{ki, Di}V . This holds regardless of whether the

customer has hyper-flexible demand.

Likewise, as in the original model, the cloud provider’s costs vary lin-

early with the amount of capacity supplied. Thus, if the cloud provider

supplies Qr units of capacity in region r, then the cloud provider’s total

costs are c
∑R

r=1Qr for some cost parameter c < V . The cloud provider

again chooses a level of capacity Qr in each region r to maximize efficiency.

6.2 Results

Let ρr(Q1, . . . , QR) denote the probability that either (i) there will not be

enough capacity in region r to meet the region-specific demand in region r

or (ii) there will not be enough supply left over to meet the hyper-flexible

demand after placing as much of the region-specific demand in the corre-

sponding regions as possible. That is, ρr(Q1, . . . , QR) denotes the proba-

bility that either Dr > Qr or Dflex >
∑R

r=1 max{Qr −Dr, 0}.

In this case, the marginal value of an additional unit of capacity in

region r is ρr(Q1, . . . , QR)V , so in order to maximize efficiency, the cloud

provider needs to choose the values ofQ1, . . . , QR to satisfy ρr(Q1, . . . , QR)V =

c. Thus, we have the following lemma:
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Lemma 2 There exist efficiency-maximizing levels of capacity Q1, . . . , QR

in regions 1, . . . , R. These values are chosen to satisfy ρr(Q1, . . . , QR) = c
V

.

We now turn to the question of how the amount of capacity that the

cloud provider supplies to meet additional hyper-flexible demand compares

to the amount of capacity that must be provisioned to meet region-specific

demand. The amount of additional capacity needed to meet additional

region-specific demand will surely be at least as large as the amount of

additional capacity needed to meet additional hyper-flexible demand, but

how big will the difference be?

Since the answer to this question may depend significantly on the con-

text, we begin by studying a situation in which the amount of hyper-flexible

demand is small relative to the amount of demand that must be place in

specific regions and the demand in different regions is independently dis-

tributed. In this setting, we prove the following result:

Theorem 6 Suppose that demand in each region r, Dr, is an indepen-

dently distributed random variable. If there is no hyper-flexible demand,

then for sufficiently large values of Nr, the marginal cost of servicing addi-

tional hyper-flexible demand is R( c
V

)R−1 times the marginal cost of servicing

additional demand that must be placed in a specific region.

The result in Theorem 6 implies that if there is little hyper-flexible de-

mand, then the marginal cost of servicing additional hyper-flexible demand

is orders of magnitude lower than the marginal cost of servicing additional

region-specific demand. It is very rare for major cloud providers not to have

enough capacity to meet demand in a particular region, so we should ex-

pect the value of c
V

, the probability that there will not be enough capacity

to meet demand in a particular region, to be very small in practical ap-

plications. Given this, the value of R( c
V

)R−1 in the statement of Theorem
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6 will be very low, and the marginal cost of servicing additional hyper-

flexible demand will be orders of magnitude lower than the marginal cost

of servicing additional region-specific demand.

The intuition for this result is as follows: If there is additional demand

that must be placed in a specific region, then the cloud provider must

supply additional capacity in that region to fulfill that demand. But if

there are multiple regions, then in the process of supplying capacity for the

region-specific demand, it is very likely that the cloud provider will supply

more capacity than is needed for the region-specific demand in some region.

This excess capacity can in turn be used to fulfill the hyper-flexible demand.

Thus, with probability close to 1, the cloud provider will be able to satisfy

the hyper-flexible demand, even without supplying additional capacity. For

this reason, the cost of servicing a small amount of hyper-flexible demand

is very small compared to the cost of servicing a similar amount of region-

specific demand.

But while the cost of servicing additional hyper-flexible demand is close

to zero in the setting in Theorem 6, this result hinges crucially on the

assumptions that the demand in different regions is independently dis-

tributed and that there is little hyper-flexible demand compared to the

region-specific demand. The difference in marginal cost between hyper-

flexible and region-specific VMs is driven by the fact that it is far less

likely that we will not have excess capacity in some region that can be

used to fulfill additional hyper-flexible demand than it is that we will not

have excess capacity in a specific region that can be used to fulfill addi-

tional region-specific demand. However, this difference becomes smaller

without the assumptions of independently distributed demand and little

hyper-flexible demand compared to the region-specific demand.

First, when there is stronger correlation in demand between the differ-

ent regions, the difference between the probability that we will not have
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excess capacity in some region that can be used to fulfill additional hyper-

flexible demand and the probability that we will not have excess capacity

in a specific region that can be used to fulfill additional region-specific

demand becomes smaller. When demand in the different regions is more

correlated, there is a higher chance that we will not have excess capacity in

other regions when we do not have excess capacity in a particular region, so

the differences in these probabilities becomes smaller. Thus, the difference

in marginal cost between hyper-flexible and region-specific VMs also be-

comes smaller when demand in different regions becomes more correlated.

Indeed, in the extreme case where demand in the different regions is per-

fectly correlated, the difference in marginal cost between hyper-flexible and

region-specific VMs would vanish.

In addition, the difference between the probability that we will not

have excess capacity in some region that can be used to fulfill additional

hyper-flexible demand and the probability that we will not have excess

capacity in a specific region that can be used to fulfill additional region-

specific demand also becomes smaller when there is more hyper-flexible

demand. When the amount of hyper-flexible demand is large relative to

the amount of region-specific demand, the marginal cost for additional

hyper-flexible demand becomes the same as the marginal cost for additional

region-specific demand. We prove this result below in a setting where the

upper bound of the support of Dr, Dr, is finite for all regions r:14

Theorem 7 For sufficiently large amounts of hyper-flexible demand, the

marginal cost of servicing additional hyper-flexible demand equals the marginal

cost of servicing additional demand that must be placed in a specific region.

14Although an analogous result holds without this assumption, making this assump-
tion enables us to greatly simplify the exposition of the proof. In the context of the
public cloud, each customer has some finite limit on the maximum number of cores that
the customer can deploy at any given time. Thus, when applying the model to the
public cloud, the upper bound of the support of Dr will be finite in practice.
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To understand the intuition for Theorem 7, note that if there is a large

amount of hyper-flexible demand, then the cloud provider will have to

supply significantly more capacity than what is needed solely to meet the

region-specific demand. For this reason, it is virtually certain that there

will be enough capacity in each region to meet the region-specific demand,

and the cloud provider will only need to focus on supplying enough total

capacity to meet total demand. But if the cloud provider is simply choosing

total capacity levels to meet total demand, then there will be no difference

between the marginal cost of additional region-specific demand and the

marginal cost of additional hyper-flexible demand. This explains the result

in Theorem 7.

7 Empirical Results

This section presents empirical results that measure the extent to which

our theoretical results identified in Section 5 hold empirically. We use data

from Microsoft Azure to illustrate the extent to which price and incremental

capacity costs vary with the size of the region.

7.1 Prices

First, we analyze how prices vary with region size in Azure. Throughout

this section we use data from the wide variety of VMs that a customer

can purchase. Even within a given region, a customer has the flexibility to

choose from many different types of VMs. For example, Azure currently

offers virtual machines that are general purpose (such as Dv3), compute

optimized (such as Fsv2), and memory optimized (such as Ev3), as well as

many others (Microsoft Azure 2020e).

Because Azure offers such a wide range of different types of VMs, not

all VMs can run on the same hardware. This means that the total amount
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of supply that is available for one type of VM in a region may differ from

the total amount of supply that is available for another type of VM in a

region. In addition, the total demand for one type of VM in a region may

differ from the total demand for another type of VM in the same region.

Due to these considerations, in defining the size of a region, we use

definitions that capture the fact that a region may be bigger for one type

of VM than for another. In particular, we define the total supply for a

particular type of VM in a region as the total number of physical cores in

the region that could be used to host this type of VM. We also define the

total demand for a type of VM in a region as the total number of physical

cores in the region that customers demanded for that type of VM.

When addressing the question of how the price for a unit of compute

varies with the size of the region, we then use a definition of region size that

is particular to the type of VM in question. Throughout we find that the

supply-based and demand-based measures of region size are nearly perfectly

correlated, so we just report the results using the supply-based measure of

region size. The results for the demand-based measure are nearly identical.

For each of six different types of Azure VMs, we noted the price, total

supply, and total demand for this VM type in each region that was available

to a US customer as of March 2020 (44 regions in total). We then analyzed

the correlation between price and total supply that could be used to host

this type of VM across the various regions. We also depict a scatterplot of

VM prices and region size for these six VM types in Figure 1.

The results of this analysis reveal significant negative correlation be-

tween the price and the size of the region. For each of the types of VMs

in question, we estimate a correlation coefficient between price and region

size that falls somewhere between −0.38 and −0.48, with an average cor-

relation coefficient of −0.43. We estimate a correlation coefficient between

price and the log of the region size that falls somewhere between −0.37 and
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Figure 1: Scatterplot of the normalized VM price compared to the normalized
supply for that VM type in different regions. This scatterplot is based on six
different types of VMs in Microsoft Azure, and the normalized price (supply)
for a particular VM type in a particular region is defined to be the ratio of the
price (supply) for that VM type in that region to the average price (supply) for
that VM type over all regions. Of the 70 cases where a region had more than
the average supply for a particular VM type (cases to the right of the vertical
dashed line), only 4 were cases where this region had a higher price than average
(cases above the horizontal dashed line), and the average price for these 70 cases
was 11% lower than the overall average. By contrast, of the 194 cases where a
region had less than the average supply for a particular VM type, these regions
had a higher price than average half the time, and sometimes the price was 50%
higher than the overall average. The correlation between normalized VM price
and normalized region size is −0.43 and the correlation between the log of these
quantities is −0.5.
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−0.57, with an average correlation coefficient of −0.48. And we estimate a

correlation coefficient between the log of price and the log of the region size

that falls somewhere between −0.37 and −0.60, with an average correlation

coefficient of −0.50.

Finally, the average prices for these types of VMs were consistently

10 − 20% higher in the smallest 1
3

of regions than in the largest 1
3

of re-

gions. These results thus reveal that there is significant negative correlation

between price and region size in practice, consistent with the theoretical

predictions in Theorem 2.15

7.2 Incremental Capacity Costs

Next, we analyze how the amount of capacity that is supplied per addi-

tional unit of demand varies with the size of a region. This section provides

an empirical illustration of our theoretical result in Theorem 3 that the in-

cremental capacity cost from adding more demand to a region is decreasing

in the size of the region.

In analyzing this problem, we account for the fact that a given type

of capacity in Azure can be used by multiple different types of VMs, so

capacity must be supplied to meet total demand for these different types of

VMs, rather than merely separately ensuring that there is enough capacity

for each individual type of VM. We thus make use of a formulation of

capacity supplied and demand that reflects these subtleties.

In particular, for each country where some region was available to a US

customer from December 2019 to November 2020, as well as each day t in

this time frame, we calculate the total supply in that country that could

be used to host some subset of general purpose VMs in Azure, Qt. We also

calculate the total demand in that country for the types of VMs that could

15There may also be other factors which influence pricing decisions such as other scale
advantages or competitive effects.
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make use of some of this particular type of capacity, Dt.

After collecting these data points (Dt, Qt) for every day t in a given

country, we then run a linear regression of Qt on Dt. The coefficient in this

regression βc for a particular country c then gives a measure of the ratio

of changes in capacity supplied to changes in demand for country c, and

thus gives a measure of the average amount of additional capacity that is

supplied for each additional unit of demand in that country.

After calculating the coefficient in this regression separately for each

country, we then measured the correlation between this coefficient and

the average size of the regions within the country. As in Section 7.1, the

supply-based and demand-based measures of region size are nearly perfectly

correlated, so we just report the results using the supply-based measure.

We also calculate 95% confidence intervals in these correlation coefficients

by generating 10, 000 bootstrap samples of countries and calculating the

correlations for each bootstrap sample.

The results of this analysis revealed significant negative correlation be-

tween the regression coefficients and the size of the regions within the coun-

try. We estimate a correlation coefficient of −0.30 between βc and region

size (with a 95% confidence interval of [−0.53,−0.11]), −0.36 between βc

and the log of region size (with a 95% confidence interval of [−0.69, 0.03]),

and −0.37 between log(βc) and the log of region size (with a 95% confidence

interval of [−0.72, 0.06]). Thus, there is negative correlation between the

incremental capacity cost from adding more demand to a region and the

size of the region, consistent with Theorem 3.

8 Conclusion

Although there are many practical settings in which a firm with multiple

locations must strategically provision capacity and set prices in different-
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sized locations, there has been little work that addresses the question of

the most efficient way for a firm to achieve these objectives. This paper has

analyzed this question and shown that a firm should provision capacity in

such a way that it is less likely that an individual customer will be unable to

purchase the goods the customer desires in a region with greater expected

demand. The firm should also set lower prices in its locations with greater

capacity and expected demand. Finally, the firm should steer customers

who are willing to purchase from multiple locations to its larger locations.

While the results in this paper can be applied to many settings in which

a firm provisions capacity for multiple locations, they are especially relevant

for the cloud computing market, where major cloud providers typically

supply cloud services in dozens of different regions throughout the world.

Our theoretical findings on how marginal costs and prices vary with the

size of a region are consistent with practice at Microsoft Azure, as marginal

costs and prices tend to be higher in Azure’s smaller regions.
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Appendix For Online Publication

Appendix A: Consequences of Using Auctions

This appendix analyzes the consequences of using an auction to sell com-

pute to customers. We consider a special case of the model presented in

Section 4 in which each customer either demands 0 or 1 units of compute.

As noted in the discussion of Lemma 1, the cloud provider chooses the level

of capacity Q so that the probability demand exceeds supply is c
V

.

If the cloud provider uses a second-price auction with a reserve price of

r, then it is a dominant strategy for each customer to make a bid equal to

the customer’s value for a unit of compute, and all customers who want a

unit of compute will bid V for a unit of compute. With probability (1− c
V

),

demand will be less than supply and any capacity sold will be sold at a

per unit price of r. But with probability c
V

, demand will be greater than

supply and all capacity will be sold at a per unit price of V , the common

bid of all the bidders in the auction.

For the public cloud, the probability that there will not be enough

capacity to meet demand, c
V

, will typically be less than 0.01. Thus, if there

is not enough capacity to meet demand, the final price at the auction V will

be over 100 times larger than the cost per unit of capacity c. By contrast,

if there is enough capacity to meet demand, the final price at the auction

will be equal to the reserve price r, which we can expect to be the same

order of magnitude as c.

These results indicate that if a cloud provider uses an auction to sell

compute to customers, then there will be significant variance in the final

price in the auction. Thus, if either the cloud provider or the cloud cus-

tomers are risk averse, using an auction to sell compute to customers would

not meet either party’s needs.

In addition, the cloud provider has much stronger incentives to under-
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invest in capacity under an auction than under a fixed price mechanism.

Suppose, for example, the cloud provider reduces the amount of capacity

provisioned to a level so that the probability there is not enough supply

to meet demand is 2c
V

rather than c
V

. Under a fixed price mechanism, this

will reduce the cloud provider’s expected revenue because it will reduce the

maximum amount of demand the cloud provider can service, while having

no impact on prices.

But under an auction, the expected price in the auction will increase

from (1− c
V

)r + c
V
V = (1− c

V
)r + c to (1− 2c

V
)r + 2c

V
V = (1− 2c

V
)r + 2c as

a result of this decrease in capacity. For reserve prices r ranging from 0 to

c, this could range from a 50− 100% increase in the expected price. Thus,

underinvesting in capacity could significantly increase expected prices in

an auction, and thereby significantly increase the cloud provider’s revenue.

This in turn implies that the cloud provider would have significantly greater

incentives to underinvest in capacity under an auction than under a fixed

price mechanism.

Appendix B: Differences Between Marginal Costs and

Average Costs

This appendix presents analysis that compares the differences in marginal

costs with the differences in average costs for different-sized regions. Sup-

pose there are two regions, A and B, and region A has N∗ customers while

region B has βN∗ customers for some β > 1. To answer the question of

how the difference in marginal costs between regions A and B compares to

the difference in average costs, we first provide mathematical expressions

for these differences:

Lemma 3 Suppose that expected total demand for a region with N cus-

tomers, µ(N) = µN for some constant µ > 0. Then the difference in
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average costs between regions A and B is cΦ−1(1 − c
V

)(σ(N∗)
N∗ − σ(βN∗)

βN∗ ),

while the difference in marginal costs between these regions is cΦ−1(1 −
c
V

)[(σ(N∗ + 1)− σ(N∗))− (σ(βN∗ + 1)− σ(βN∗))].

Proof. We know from the proof of Theorem 3 that the capacity cost for a

region with N customers is C(N) = c[µ(N) + Φ−1(1 − c
V

)σ(N)], so when

µ(N) = µN for some constant µ > 0, we have C(N)
N

= c[µ+Φ−1(1− c
V

)σ(N)
N

].

From this it follows that the difference in average costs between regions A

and B is C(N∗)
N∗ − C(βN∗)

βN∗ = cΦ−1(1− c
V

)(σ(N∗)
N∗ − σ(βN∗)

βN∗ ).

Similarly, we know from Theorem 3 that if µ(N) = µN for some con-

stant µ > 0, then the marginal cost of serving a region with N customers is

C(N + 1)−C(N) = c[µ+ Φ−1(1− c
V

)(σ(N + 1)−σ(N))]. Thus, the differ-

ence in marginal costs between regions A and B is [C(N∗+ 1)−C(N∗)]−

[C(βN∗ + 1)− C(βN∗)] = cΦ−1(1− c
V

)[(σ(N∗ + 1)− σ(N∗))− (σ(βN∗ +

1)− σ(βN∗))]. �

With these expressions for the differences in average costs and marginal

costs in mind, we first illustrate how the difference in marginal costs be-

tween different-sized regions compares to the difference in average costs

when customers have independent and identically distributed demand:

Theorem 8 Suppose that each customer’s demand Di is an independent

and identically distributed draw from some cumulative distribution func-

tion G(·) with mean µ and standard deviation σ. Then the difference in

marginal costs between regions A and B is half as large as the corresponding

difference in average costs.

Proof. If each customer’s demand Di is an independent and identically

distributed draw from some cumulative distribution function G(·) with

mean µ and standard deviation σ, then µ(N) = µN and σ(N) = σ
√
N .

Thus, σ(N)
N
− σ(βN)

βN
= σ√

N
− σ√

βN
= σ(

√
β−1)√
βN

, while (σ(N + 1) − σ(N)) −
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(σ(βN + 1) − σ(βN)) = σ
2
√
N
− σ

2
√
βN

+ O( 1
N

) = σ(
√
β−1)

2
√
βN

+ O( 1
N

). Since

(σ(N + 1) − σ(N)) − (σ(βN + 1) − σ(βN)) = σ(
√
β−1)

2
√
βN

is half as large as

σ√
N
− σ√

βN
= σ(

√
β−1)√
βN

, it follows that the difference in marginal costs be-

tween regions A and B is half as large as the corresponding difference in

average costs. �

But while Theorem 8 illustrates that there is a predictable relationship

between the difference in marginal costs and the difference in average costs

for different-sized regions when each customer’s demand is an independent

and identically distributed draw, this relationship will not hold more gen-

erally. In fact, it is possible for the difference in marginal costs between

different-sized regions to be greater than the difference in average costs:

Example 1 Suppose that σ(N) = γN for N ≤ βN∗ and σ(N) is indepen-

dent of N for values of N ≥ βN∗. Then the difference in marginal costs

between regions A and B is greater than the corresponding difference in

average costs.

Proof. If σ(N) = γN for N ≤ βN∗ and σ(N) is independent of N for

values of N ≥ βN∗, then σ(N)
N
− σ(βN)

βN
= γ − γ = 0, while (σ(N + 1) −

σ(N)) − (σ(βN + 1) − σ(βN)) = γ − 0 = γ. Since (σ(N + 1) − σ(N)) −

(σ(βN + 1)− σ(βN)) = γ is greater than σ(N)
N
− σ(βN)

βN
= 0, it follows that

the difference in marginal costs between regions A and B is greater than

the corresponding difference in average costs. �

The particular example presented in Example 1 could arise when there

is both uncertainty and perfect correlation between the demands of the

first βN∗ customers, but there is no uncertainty about the demands of any

additional customers. This example illustrates that it is possible for the

difference in marginal costs between different-sized regions to be greater

than the difference in average costs.
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Appendix C: Proofs of Main Results

Proof of Lemma 1. Let ρ(Q) denote the probability that there will not be

enough capacity to meet demand for all customers given a capacity choice

Q. In this case, the marginal value of an additional unit of capacity to

customers is ρ(Q)V , so in order to maximize efficiency, the cloud provider

needs to choose Q in such a way that ρ(Q)V = c, meaning we would have

ρ(Q) = c
V

.

Since the distribution of total demand, D =
∑N

i=1 Di, is drawn from

the distribution Φ(D|µ(N), σ(N)) = Φ(D−µ(N)
σ(N)

) for sufficiently large N , in

order to ensure that the probability there will not be enough capacity to

meet demand is ρ(Q), the cloud provider should set Q = µ(N) + Φ−1(1−

ρ(Q))σ(N). This implies that in order to maximize efficiency, the cloud

provider should choose Q = µ(N) + Φ−1(1− ρ(Q))σ(N) = µ(N) + Φ−1(1−
c
V

)σ(N). �

Proof of Theorem 1. For sufficiently large N , the distribution of total

demand, D =
∑N

i=1Di, is drawn from the distribution Φ(D|µ(N), σ(N)) =

Φ(D−µ(N)
σ(N)

). Furthermore, we know from Lemma 1 that the cloud provider

sets Q = µ(N) + Φ−1(1− c
V

)σ(N).

If the cloud provider sets this level of capacity, then the expected frac-

tion of demand that will be unfilled by the available capacity is∫∞
Φ−1(1− c

V
)

(z−Φ−1(1− c
V

))σ(N)

µ(N)+zσ(N)
dΦ(z) =

∫∞
Φ−1(1− c

V
)

z−Φ−1(1− c
V

)

(µ(N)/σ(N))+z
dΦ(z). Since

σ(N)
µ(N)

is decreasing in N , it follows that µ(N)
σ(N)

is increasing in N and∫∞
Φ−1(1− c

V
)

z−Φ−1(1− c
V

)

(µ(N)/σ(N))+z
dΦ(z) is decreasing in N . Thus, the expected frac-

tion of demand that will be unfilled by the available capacity is decreasing

in N . �

Proof of Theorem 2. Since the price for a unit of compute is increasing

in average costs, cQ
E[min{D,Q}] , the price for a unit of compute is decreas-

ing in N if and only if Q
E[min{D,Q}] is decreasing in N , which is equiva-
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lent to E[min{D
Q
, 1}] being increasing in N . We thus seek to prove that

E[min{D
Q
, 1}] is increasing in N .

We know that for sufficiently large N , the distribution of total demand

is drawn from the distribution Φ(D|µ(N), σ(N)) = Φ(D−µ(N)
σ(N)

). In addition,

we know from Lemma 1 that the cloud provider sets Q = µ(N) + Φ−1(1−
c
V

)σ(N). Thus, under these circumstances, E[min{D
Q
, 1}] =∫∞

−∞
µ(N)+min{z,Φ−1(1− c

V
)}σ(N)

µ(N)+Φ−1(1− c
V

)σ(N)
dΦ(z).

Since Φ(·) is symmetric about 0, we know that
∫∞
−∞min{z,Φ−1(1 −

c
V

)} dΦ(z) = −K for some constant K > 0 that is independent of N .

Thus, E[min{D
Q
, 1}] = µ(N)−Kσ(N)

µ(N)+Φ−1(1− c
V

)σ(N)
= µ(N)/σ(N)−K

µ(N)/σ(N)+Φ−1(1− c
V

)
for some

constant K > 0. Since σ(N)
µ(N)

is decreasing in N , it follows that µ(N)
σ(N)

is

increasing in N and E[min{D
Q
, 1}] = µ(N)/σ(N)−K

µ(N)/σ(N)+Φ−1(1− c
V

)
is increasing in N .

Thus, the price for a unit of compute is decreasing in N . �

Proof of Theorem 3. We know from Lemma 1 that for sufficiently large

N , the cloud provider sets Q = µ(N) + Φ−1(1 − c
V

)σ(N). Thus, C(N) =

c[µ(N) + Φ−1(1 − c
V

)σ(N)] gives the capacity cost that is incurred in a

region with N customers.

The above result in turn implies that C(N + 1) − C(N) = c[µ(N +

1) − µ(N) + Φ−1(1 − c
V

)(σ(N + 1) − σ(N))]. Since µ(N + 1) − µ(N) is

independent of N , it then follows that C(N + 1) − C(N) is decreasing in

N if and only if σ(N + 1) − σ(N) is decreasing in N . And since σ(N) is

a strictly concave function of N , we know that σ(N + 1)− σ(N) is indeed

decreasing in N . Thus, the incremental capacity cost resulting from adding

another customer to a region, C(N + 1)− C(N), is decreasing in N . �

Proof of Theorem 4. We know that for sufficiently large N , the distri-

bution of total demand, D =
∑N

i=1Di, is drawn from the distribution

Φ(D|µ(N), σ(N)) = Φ(D−µ(N)
σ(N)

). In addition, we know from Lemma 1

that the cloud provider sets Q = µ(N) + Φ−1(1 − c
V

)σ(N). Thus, under
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these circumstances, the expected number of deployment failures would be

F (N) =
∫∞

Φ−1(1− c
V

)
(z − Φ−1(1− c

V
))σ(N) dΦ(z).

The above result in turn implies that F (N+1)−F (N) =
∫∞

Φ−1(1− c
V

)
(z−

Φ−1(1 − c
V

))(σ(N + 1) − σ(N)) dΦ(z). Since σ(N) is a strictly concave

function of N , it follows that σ(N +1)−σ(N) is decreasing in N , and thus

that this expression for F (N + 1)− F (N) is decreasing in N . �

Proof of Theorem 5. It follows from Theorem 3 that placing a new

customer in the largest region will result in the lowest incremental capacity

costs and from Theorem 4 that placing a new customer in the largest region

will result in the smallest number of incremental deployment failures. Thus,

if a new customer can be placed in any region, it is most efficient to place

this customer in the largest region. �

Proof of Lemma 2. We have already seen that any efficiency-maximizing

levels of capacity Q1, . . . , QR must satisfy ρr(Q1, . . . , QR) = c
V

, so it is

sufficient to prove that efficiency-maximizing levels of capacity exist. To

see this, let Q∗ denote some value of Q such that the probability that total

demand Dflex +
∑R

r=1Dr exceeds Q∗ is less than c
V

. For any values of

Qr ≥ Q∗, the marginal value of an additional unit of capacity in region

r will always be less than the marginal cost of this capacity, so the cloud

provider will never want to supply more than Q∗ units of capacity in region

r. Thus, the cloud provider will seek to find values of Q1, . . . , QR that

maximize efficiency subject to the constraint that Qr ≤ Q∗ for all r.

But the problem of maximizing efficiency subject to the constraint that

Qr ≤ Q∗ for all r involves maximizing a continuous function of (Q1, . . . , QR)

over a closed and bounded set. Since there exists a solution to any such op-

timization problem, it follows that there exist efficiency-maximizing levels

of capacity Q1, . . . , QR in regions 1, . . . , R. �

Proof of Theorem 6. If there is no hyper-flexible demand, then we know
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from Lemma 1 that the cloud provider chooses Qr in each region r so that

Qr = µ(Nr)+Φ−1(1− c
V

)σ(Nr). This in turn implies that the cost incurred

in region r is Cr = c[µ(Nr) + Φ−1(1− c
V

)σ(Nr)], meaning the marginal cost

of servicing ε more demand that must be placed in region r is cε, as the

value of the expression for Cr increases by cε when µ(Nr) increases by ε.

Now suppose we must service ε more hyper-flexible demand for some

arbitrarily small ε > 0. In the limit as ε → 0, the probability that we will

not have enough excess capacity in a particular region r to meet this hyper-

flexible demand after allocating the region-specific demand is c
V

. And since

there are a total of R−1 other regions besides region r, the probability that

we will not have enough excess capacity in some region other than region

r to meet this hyper-flexible demand after allocating the region-specific

demand is ( c
V

)R−1.

The above results imply that if there is ε more hyper-flexible demand

for some arbitrarily small ε > 0, then with probability ( c
V

)R−1 the cloud

provider will need to allocate ε more demand to region r, and with proba-

bility 1−( c
V

)R−1 the cloud provider will not need to allocate any additional

demand to region r. Thus, having ε more hyper-flexible demand increases

expected demand in region r, µ(Nr), by ( c
V

)R−1ε.

In addition, since the variance in the amount of hyper-flexible demand

that must be allocated to region r is O(ε2), having ε more hyper-flexible de-

mand increases the standard deviation of the demand that must be placed

in region r, σ(Nr), by O(ε2). And since the cost of servicing demand in

region r is Cr = c[µ(Nr) + Φ−1(1− c
V

)σ(Nr)], having ε more hyper-flexible

demand increases the value of the expression for Cr by c( c
V

)R−1ε + O(ε2),

meaning the marginal cost of servicing ε more hyper-flexible demand in

region r is c( c
V

)R−1ε+O(ε2).

Since there are R regions, this means that the total marginal cost of

servicing ε more hyper-flexible demand in all regions is cR( c
V

)R−1ε+O(ε2),

39



which is R( c
V

)R−1 times as large as cε in the limit as ε → 0. Since the

marginal cost of servicing ε more demand that must be placed in region

r is cε, the marginal cost of servicing additional hyper-flexible demand is

R( c
V

)R−1 times the marginal cost of servicing additional demand that must

be placed in a specific region. �

Proof of Theorem 7. We have seen in the proof of Theorem 6 that the

marginal cost of servicing an additional ε demand that must be placed in a

specific region is cε. Thus, it suffices to prove that, if the amount of hyper-

flexible demand Dflex is sufficiently large, the marginal cost of servicing

an additional ε hyper-flexible demand is cε. To prove this, we first prove

that if Q1, . . . , QR denote the optimal capacity choices in regions 1, . . . , r,

then for sufficiently large Dflex, the probability there will not be enough

capacity to meet region-specific demand, Pr(Dr > Qr), is 0 in all regions

r.

To see this, recall from Lemma 2 that the values of Q1, . . . , QR must

be chosen in such a way that ρr(Q1, . . . , QR) = c
V

. Since ρr(Q1, . . . , QR)

is greater than or equal to the probability that Dflex >
∑R

r=1 max{Qr −

Dr, 0}, this in turn implies that these values must be chosen in such a way

that Pr(Dflex >
∑R

r=1 max{Qr − Dr, 0}) ≤ c
V

. This further implies that

the values of Q1, . . . , QR must be chosen in such a way that Pr(Dflex >∑R
r=1Qr) ≤ c

V
. And since Dflex and

∑R
r=1 Qr are both constants, this in

turn holds if and only if
∑R

r=1Qr ≥ Dflex.

The above results imply that if Dflex >
∑R

r=1 Dr, then
∑R

r=1Qr >∑R
r=1Dr as well. Thus, if we let Q∗ denote the optimal total amount of

capacity to purchase (i.e. Q∗ ≡
∑R

r=1Qr), then for values of Dflex >∑R
r=1Dr, it will be possible to choose values of Q1, . . . , QR in such a way

that
∑R

r=1Qr = Q∗ and Pr(Dr > Qr) = 0 for all regions r.

Now suppose the cloud provider chooses the amounts of capacity to
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purchase in each region, Q1, . . . , QR, in such a way that
∑R

r=1Qr = Q∗.

If the cloud provider also chooses these values of Q1, . . . , QR to satisfy

Pr(Dr > Qr) = 0 for all regions r, then the cloud provider will maximize

the total amount of demand that can be serviced for the following reason:

The total amount of region-specific demand that the cloud provider

can service is Dspec =
∑R

r=1 min{Dr, Qr} and the total amount of hyper-

flexible demand that can be serviced is min{Dflex, Q
∗ −Dspec}. Thus, the

total amount of demand that the cloud provider can service is Dspec +

min{Dflex, Q
∗ − Dspec} = min{Dspec + Dflex, Q

∗}, which is increasing in

Dspec.

ButDspec =
∑R

r=1 min{Dr, Qr} ≤
∑R

r=1Dr for any values ofQ1, . . . , QR.

And if Q1, . . . , QR are chosen in such a way that Pr(Dr > Qr) = 0 for all re-

gions r, then Dspec =
∑R

r=1Dr regardless of the realizations of D1, . . . , DR.

Thus, Dspec is maximized by choosing the values of Q1, . . . , QR in such a

way that Pr(Dr > Qr) = 0 for all regions r, so for any fixed value of

Q∗, the cloud provider will maximize the total amount of demand that

can be serviced by choosing the values of Q1, . . . , QR in such a way that

Pr(Dr > Qr) = 0 for all regions r.

Now recall from Lemma 2 that the cloud provider chooses the val-

ues of Q1, . . . , QR in such a way that ρr(Q1, . . . , QR) = c
V

for all regions

r. Since ρr(Q1, . . . , QR) denotes the probability that either Dr > Qr or

Dflex >
∑R

r=1 max{Qr − Dr, 0}, and we know that the cloud provider

chooses Q1, . . . , QR in such a way that Pr(Dr > Qr) = 0 for all regions r,

it follows that ρr(Q1, . . . , QR) = Pr(Dflex >
∑R

r=1 Qr −Dr) for all r. This

in turn implies that the cloud provider chooses the values of Q1, . . . , QR

in such a way that Pr(Dflex >
∑R

r=1Qr − Dr) = Pr(Dflex +
∑R

r=1Dr >∑R
r=1Qr) = c

V
.

But if the value of Dflex increases by ε, then the value of
∑R

r=1 Qr that is

needed to ensure that Pr(Dflex +
∑R

r=1Dr >
∑R

r=1Qr) = c
V

also increases
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by ε. Thus, if the amount of hyper-flexible demand Dflex is sufficiently

large, the marginal cost of servicing an additional ε hyper-flexible demand

is cε and thus equal to the marginal cost of servicing an additional ε demand

that must be placed in a specific region. �
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